## # A tibble: 5 x 2
## county newCases
## <chr> <dbl>
## 1 Los Angeles 1042
## 2 Sacramento 394
## 3 San Diego 361
## 4 Santa Clara 289
## 5 Riverside 205
Most New Cases California Counties
Los Angeles |
1,042 |
Sacramento |
394 |
San Diego |
361 |
Santa Clara |
289 |
Riverside |
205 |
## # A tibble: 5 x 2
## county cases
## <chr> <dbl>
## 1 Los Angeles 252066
## 2 Riverside 55073
## 3 Orange 51758
## 4 San Bernardino 50385
## 5 San Diego 42032
Most Cumulative Cases California Counties
Los Angeles |
252,066 |
Riverside |
55,073 |
Orange |
51,758 |
San Bernardino |
50,385 |
San Diego |
42,032 |
Attributes of Population Estimates
names of columns dimension: 3275 x 165 number of rows: 3275 structure: tibble/data frame
## # A tibble: 5 x 2
## county newCasesCapita
## <chr> <dbl>
## 1 Kings 0.000791
## 2 Madera 0.000451
## 3 Calaveras 0.000261
## 4 Sacramento 0.000254
## 5 Sutter 0.000227
Most New Cases per capita California Counties
Kings |
0.0007912 |
Madera |
0.0004513 |
Calaveras |
0.0002614 |
Sacramento |
0.0002539 |
Sutter |
0.0002269 |
## # A tibble: 5 x 2
## county casePerCapita
## <chr> <dbl>
## 1 Imperial 0.0619
## 2 Kings 0.0460
## 3 Kern 0.0340
## 4 Tulare 0.0324
## 5 Merced 0.0308
Most cumulative per capita California Counties
Imperial |
0.0619044 |
Kings |
0.0460246 |
Kern |
0.0339513 |
Tulare |
0.0324199 |
Merced |
0.0307584 |
## # A tibble: 17 x 2
## county totCases
## <chr> <dbl>
## 1 Alpine 0
## 2 Del Norte 25.2
## 3 El Dorado 42.0
## 4 Humboldt 58.3
## 5 Lake 97.8
## 6 Lassen 39.3
## 7 Mariposa 17.4
## 8 Mono 6.92
## 9 Nevada 47.1
## 10 Placer 94.6
## 11 Plumas 16.0
## 12 Shasta 27.8
## 13 Sierra 0
## 14 Siskiyou 62.0
## 15 Solano 96.5
## 16 Trinity 32.6
## 17 Tuolumne 58.7
dat %>%
summarize(totCases = sum(cases))
## # A tibble: 1 x 1
## totCases
## <dbl>
## 1 47000535
dat %>%
summarize(totnewCases = sum(newCases, na.rm = TRUE))
## # A tibble: 1 x 1
## totnewCases
## <dbl>
## 1 757052
The total number of cases is 29381287 and total number of new cases is 634918 and the total number of safe counties is 12.
I think the scaling made some states worse and some states better. For example, for California the slope looked a lot more prevalent in New Cases but after being scaled by its huge population, it seemed less severe represented by a smaller looking slope. Louisiana had the oppoisite effect. The slope appeared bigger after being scaled with population. I think that is because its population is small.